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SUMMARY:

This memo summarizes disturbance modeling of the Hubble Space Telescope (HST) re-

action wheels, generated from testing performed on the actual HST 
ight units. The

disturbances are modeled as sinusoidal components at harmonic frequencies of the reac-

tion wheel speed, resulting in a discrete-frequency model. Unfortunately this model does

not lend itself easily to broadband frequency domain analysis and loop-shaping control

design. From the original, discrete-frequency model, a stochastic broadband model is gen-

erated. Both models have been implemented in Matlab, and are available on the jpl-gnc

network.



Introduction

In performing pointing and integrated controls-structures-optics performance analyses, it

is necessary to model disturbances. For distributed opto-mechanical spacecraft with very

tight performance requirements, disturbance modeling becomes critical: a conservative

model may result in an excessively costly and complex design, whereas an optimistic

model may yield a design that won't meet the requirements.

Oftentimes the only signi�cant disturbances in the medium to high frequency regime

are reaction wheel assembly (RWA) disturbances. For this reason, a disturbance model

based on testing of the HST RWAs has been used in the performance analysis of several

distributed optics space missions (POINTS, OSI, DLI, and SONATA, among others).

As described below, this model is a harmonic disturbance model, i.e., it models the

disturbance forces and torques as harmonics of the reaction wheel speed.

Since several of these missions employ optical control systems, it is necessary to design

and evaluate the control systems in order to address the performance analysis. Since the

harmonic model results in a discrete-frequency spectrum, it does not lend itself easily

to broadband frequency domain analysis and loop-shaping control design. In order to

simplify the control design and analysis, a broadband stochastic model was created from

the harmonic model.

HST RWA Harmonic Disturbance Model

Since the Hubble Space Telescope had very �ne pointing and mechanical stability re-

quirements, a detailed and accurate disturbance model was needed. For this reason,

disturbance characterization tests were performed on the RWA 
ight units [1]. Based on

this test data, the disturbance forces and torques were modeled as consisting of discrete

harmonics of the reaction wheel speed, frwa, with amplitudes proportional to the square

of the wheel speed:

m(t) =
nX
i=1

Cif
2
rwa sin (2�hifrwat+ �i) (1)

where m(t) is the disturbance torque or force, Ci is an amplitude coe�cient, hi is the

harmonic number, and �i is a random phase (uniform over [0; 2�]). Using this model,

estimating the amplitude coe�cient and the harmonic number is equivalent to determining

the amplitude and frequency of each component as a function of wheel speed.

The disturbances measured were forces in the plane of the wheel (radial forces), force

along the wheel's axis of rotation (axial force), and wobble torques (radial torques).

Torque about the axis of rotation (torque ripple and motor cogging) was found to be

insigni�cant. The resultant model parameters are listed in Table 1 for each disturbance

direction. The 1x harmonics are primarily caused by dynamic and static wheel imbalances,
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while the other harmonics are caused by bearing related sources (e.g., geometric imper-

fections). For a more detailed discussion of the sources of disturbances, see Appendix F

of [1].

Typical Integrated Performance Analysis

A typical integrated controls-structures-optics performance analysis is described in this

section for two reasons: 1) to demonstrate the nature of the discrete-frequency disturbance

model and 2) to illustrate the need for a broadband RWA disturbance model. In this

particular example, the performance metric is the optical path di�erence (OPD) between

two arms of an optical interferometer.

Since the RWA disturbances are dependent upon the wheel speed, a wheel speed must

be given in order to perform a disturbance analysis. Unfortunately, the wheel speed

during observations will vary as the spacecraft attitude control system reacts to external

torques. The extent to which this variation occurs is dependent upon the characteristics of

the momentummanagement system and the external torques. Furthermore, if the wheels

are biased at di�erent speeds, momentumwill be transferred between wheels during a slew.

This results in a change of separate wheel speeds after a slew, even though the overall

angular momentum remains unchanged by the slew. For these reasons, the wheel speeds

can vary over a wide range. Therefore, the performance analysis must be parameterized

by the wheel speed.

The parameterized result of this example disturbance analysis is given Figure 1. Fig-

ure 1 displays the root-mean-squared OPD variation, �opd, as a function of wheel speed.

Each point on the graph represents a standard deviation of OPD resulting from distur-

bances of a single wheel spinning at the given wheel speed. Figure 1 is not a power spec-

tral density. Instead, each point represents the standard deviation of a discrete-frequency

power spectral density.

For the sake of simplicity, it is desirable to condense the performance displayed para-

metrically in Figure 1 to a single number. The most obvious simpli�cation is to take the

largest value of �opd, analogous to the H1 norm. This can be easily read o� of the graph.

Another, perhaps more obscure metric would be the root-mean-square of �opd over the

wheel speeds, analogous to the H2 norm (actually an L2 norm). The value of this metric

is shown in the y-axis label of Figure 1. At �rst hearing this metric sounds strange, so a

mathematical description is in order:

k�opdk
2

L2

=
1

fmax

Z fmax

0
�2opd (frwa) dfrwa (2)

where k�opdk
L2

is the L2 norm and fmax is the maximum wheel speed. This metric was

�rst applied to the Focus Mission Interferometer by S. Sirlin [2].
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Radial Forces Axial Forces Radial Torques

hi Ci

�
N

(Hz)2

�
Ci

�
N

(Hz)2

�
Ci

�
Nm

(Hz)2

�
0.35 2.58x10�5 1.44x10�6

1.00 1.50x10�4 6.10x10�5 1.93x10�5

2.00 7.91x10�5 9.05x10�5 1.51x10�5

2.82 1.69x10�4 3.09x10�4 7.60x10�5

3.00 2.45x10�5 0 0

3.12 3.01x10�5 4.25x10�5 0

3.25 5.29x10�5 0 0

3.60 2.34x10�5 0 0

3.84 6.82x10�5 5.33x10�5 0

4.00 4.12x10�5 3.99x10�5 0

4.14 1.04x10�4 7.24x10�5 0

4.35 0 7.21x10�5 0

4.42 0 5.78x10�5 0

4.55 4.85x10�5 0 0

4.74 4.69x10�5 0 0

5.00 3.00x10�5 0 0

5.18 8.55x10�5 3.87x10�4 1.46x10�4

5.60 1.60x10�4 3.16x10�4 0

5.76 8.89x10�5 0 0

6.00 2.23x10�4 0 0

6.17 0 3.14x10�4 0

6.64 0 2.25x10�4 0

7.50 1.03x10�4 1.20x10�4 0

8.28 1.46x10�4 0 0

8.50 1.71x10�4 3.32x10�4 0

8.70 1.89x10�4 0 0

9.00 1.20x10�4 0 0

10.20 1.37x10�4 0 0

10.28 0 5.06x10�4 0

10.44 1.20x10�4 0 0

10.80 1.43x10�4 0 0

11.22 3.57x10�4 0 0

11.29 0 2.07x10�4 0

11.78 0 5.70x10�4 0

11.88 2.86x10�4 0 0

14.62 0 3.80x10�4 0

Table 1: Hubble Space Telescope reaction wheel discrete-

frequency disturbance model harmonic numbers, hi, and

coe�cients, Ci.
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Figure 1: Typical results of a discrete-frequency dis-
turbance analysis showing root-mean-squared OPD as a

function of RWA speed.

Why use the L2 norm at all? It will be shown below that this metric can be calculated

without performing the parameterized disturbance analysis, which can be very numerically

costly. On the other hand, �nding the maximum of �opd does require the parameterized

disturbance analysis.

The shortcoming of this harmonic model is that it does not lend itself to loop-shaping

control design. Since the wheel speeds vary, any optical control system seeking to reject the

wheel disturbances must do so over a band of wheel speeds, derived from the expected

variations discussed above. Furthermore, since there is signi�cant deviation from the

model for di�erent wheels (Figure 1 through Figure 16, [1]), the control system must

have robust performance with respect to this variability among wheels. This necessity for

broadband control design gave birth to a stochastic broadband disturbance model.

Stochastic Broadband RWA Disturbance Model

Several attempts have been made at deriving a broadband disturbance model from the

discrete-frequency model. The �rst attempt was used in the \maximum jitter vs. fre-
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quency" envelope conceived by Laskin, San Martin, et.al. [3]. This model speci�ed the

maximumjitter resulting from the RWA disturbances at each frequency, over the ensemble

of all possible wheel speeds. Although this envelope is not a disturbance model, it implies

a broadband disturbance. Much later Rob Calvet generated an explicit over bounding

broadband disturbance model. There are three problems with these models: 1) Since the

actual RWA disturbances exist at only discrete-frequencies, the estimates with the over

bounding broadband models are conservative, 2) the mathematical relationship to the

actual discrete-frequency disturbances are somewhat convoluted, and 3) the broadband

models are not easily generated for a restricted wheel speed range.

Gary Blackwood derived a modi�cation to the Calvet model that equated the energy

of the broadband excitation of a particular mode to the energy of a harmonic excitation

of that same mode. This modi�cation is still conservative, since the broadband model will

excite all modes as if each was being excited by a harmonic, while the discrete-frequency

disturbance will excite only several modes at any single wheel speed. Furthermore, this

equi-energy model depends upon the half-power bandwidth and the residue of the struc-

tural modes in the given input-output relationship. In other words, the disturbance model

depends on the structural properties.

In order to provide a mathematical interpretation of a broadband model that was

independent of the structural properties, a stochastic broadband model was created. This

model assumes that the wheel speed is a uniform random variable over some interval

[f1; f2], resulting in the broadband stochastic power spectral density, �m(!), shown in

Figure 2.

Since m(t) is now a random process, �m(!) is derived by taking the Fourier transform

of the autocorrelation, Rm(� ) [4]:

�m(!) =
Z
1

�1

Rm(� )e
�j!�d� (3)

where the autocorrelation is:

Rm(� ) = E fm(t)m(t� � )g

=
nX
i=1

C2
i

2
E
n
f4rwa cos (2�hifrwa� )

o
(4)

The corresponding power spectral density is given in terms of the probability density

function of the wheel speed, fp(u).

�m(!) =
nX
i=1

�C2
i !

4

2(2�hi)
5

�
fp

�
!

2�hi

�
+ fp

�
�!

2�hi

��
(5)

The derivations of Rm(� ) and �m(!) are given in the appendix.
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Figure 2: Stochastic broadband RWA radial force distur-
bance power spectral density assuming a uniform random

variable wheel speed over the interval [0, 3000] RPM.

In this case, the probability density function for the reaction wheel speed is uniform:

fp(u) =

(
1

f2�f1
for f1 < u � f2

0 otherwise
(6)

The resultant power spectral density is:

�m(!) =
nX
i=1

�mi
(!)

�mi
(!) =

8<
:

�C2

i

2(f2�f1)(2�hi)
5!

4 for 2�hif1 < j!j < 2�hif2

0 otherwise
(7)

This is the description of the broadband power spectral density shown (for f1 = 0Hz

and f2 = 50Hz) in Figure 2. Note that each component, �mi
(!), is a straight line with

slope 4 on a logarithmically scaled plot. Hence, Figure 2 is merely the superposition of

these triangular component power spectral densities.

The power spectral density could be found from Eq. 5 for any assumed probability

density fp. As an example, the power spectral density for a Gaussian wheel speed is

shown in Figure 3.
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Figure 3: Stochastic broadband RWA radial force distur-
bance power spectral density assuming a Gaussian wheel

speed with mean of 1500 RPM and standard deviation
of 100 RPM.

As a result of this derivation, a broadband power spectral density can be generated

by assuming that the reaction wheel speed is a random variable. Furthermore, that wheel

speed can have a restricted range, by proper choice of the probability density function.

In particular, a uniform random variable over the expected wheel speed range [f1; f2] is

proposed, leading to the power spectral density of Eq. 7.

Equivalence of L2 norm and Stochastic Standard Deviation

As mentioned above, the L2 norm can be calculated without going through the interme-

diate step of performing the parameterized disturbance analysis. This is possible since

the L2 norm is equivalent to the standard deviation of the output resulting from the

stochastic disturbance.

If G(s) is the transfer function from the RWA disturbance to the output metric (call

it OPD for consistency with Eq. 2), and if �nb is the power spectral density of the nar-

row band RWA disturbance, then the root-mean-squared performance metric is given by

Eq. 8 [4]. Note that the narrow band power spectral density is dependent upon the
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reaction wheel speed.

�2opd(frwa) =
1

2�

Z
1

�1

jG(|!)j
2
�nb(!; frwa)d! (8)

Using this expression for the the performance metric and substituting into Eq. 2, the

L2 norm becomes:

k�opdk
2

L2

=
1

2�fmax

Z fmax

0

Z
1

�1

jG(|!)j
2
�nb(!; frwa)d!dfrwa (9)

Now let f1 = 0 and f2 = fmax in Eq. 6, then the L2 norm can be written as:

k�opdk
2

L2

=
1

2�

Z
1

�1

fp(u)
Z
1

�1

jG(|!)j
2
�nb(!; u)d!du (10)

Following the derivation in the Appendix, but with frwa deterministic, �nb is found to

be:

�nb(!; frwa) =
nX
i=1

(
�C2

i f
4
rwa

2
[� (! � !o) + � (! + !o)]

)
(11)

where �(! � !o) is the Dirac delta function and !o = 2�hifrwa [6].

Next substitute Eq. 11 into Eq. 10, with the change of variables frwa = u. By reorder-

ing the integrations and summation, a �nal expression for the L2 norm is obtained.

k�opdk
2

L2

=
1

4

nX
i=1

Z
1

�1

C2
i fp(u)u

4

Z
1

�1

jG(|!)j2 [�(! � !o) + �(! + !o)]d!du (12)

Leaving aside the L2 norm for a moment, let's address the variance of the performance

metric resultant from the broadband stochastic disturbance. The variance can be derived

from the power spectral density according to Eq. 8, using the broadband power spectral

density.

~�2opd =
1

2�

Z
1

�1

jG(|!)j2�m(!)d! (13)

Here the standard deviation is written as ~�opd in order to distinguish between the broad-

band and narrowband analyses.

Finally, substituting for �m(!) according to Eq. 24 (see the appendix) and rearranging

gives the result:

~�2opd =
1

4

nX
i=1

Z
1

�1

C2
i fp(u)u

4

Z
1

�1

jG(|!)j
2
[� (! � !o) + � (! + !o)]d!du (14)

Which is the same expression as Eq. 12. Thus, the L2 norm for the narrowband distur-

bance analysis is mathematically equivalent to the standard deviation for the stochastic

broadband disturbance analysis, when the wheel speed is assumed to be a uniform random

variable over the interval [0; fmax].
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Matlab Implementation

Both the discrete and broadband models have been implemented in Matlab and are avail-

able to users on the jpl-gnc net by including the /opt/matlab-local/local4/models

toolbox in the matlabpath. The functions can be distributed to those who don't have

access to the jpl-gnc net.

Discrete disturbance models are available for radial forces, axial force, and radial

torques. The function names are rwadist rad.m, rwadist axi.m, and rwadist tor.m,

respectively. These functions generate either time domain or frequency domain informa-

tion. For more speci�c descriptions, use the Matlab on-line help feature (i.e., type help

rwadist rad in Matlab).

Similarly, broadband modeling functions are named rwabroad rad.m, rwabroad axi.m,

and rwabroad tor.m. These functions generate a power spectral density of the broadband

disturbance for either a uniform random variable wheel speed or a Gaussian wheel speed.

Again, details are given by the on-line help feature.

For questions or comments, please call me at 4-0615.
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Appendix

The autocorrelation of the stochastic broadband RWA disturbance can be found by sub-

stituting for m(t) according to Eq. 1 in the de�nition of autocorrelation.

Rm(� ) = E fm(t)m(t� � )g

= E

8<
:

nX
i=1

nX
j=1

CiCjf
4
rwa sin(2�hifrwat+ �i) sin(2�hjfrwa(t� � ) + �j)

9=
; (15)

Trigonometric manipulation yields:

Rm(� ) = E

8<
:

nX
i=1

nX
j=1

CiCjf
4
rwa

2
[cos (2�frwa (hit� hj (t� � )) + �i � �j)

� cos (2�frwa (hit+ hj (t� � )) + �i + �j)]g (16)

The expression for Rm(� ) is simpli�ed by assuming that �i and �j are stochastically

independent when i 6= j. This assumption is useful since:

E fcos(!o� + �1 � �2)g = 0 (17)

when �1 and �2 are independent and uniform over the interval [0; 2�]. Using the assump-

tion of independence and the related observation, Eq. 16 is reduced to a single summation,

since the expected value is zero when i 6= j.

Rm(� ) =
nX
i=1

C2
i

2
E
n
f4rwa cos (2�hifrwa� )

o
(18)

The autocorrelation can be solved by letting z (frwa) = f4rwa cos (2�hi�frwa) and notic-

ing that z (frwa) is a function of a single random variable. Rewriting Rm(� ) in terms of

z (frwa) illustrates the usefulness of this observation:

Rm(� ) =
nX
i=1

C2
i

2
E fz (frwa)g (19)

The well known evaluation of E fz (frwa)g yields [4]:

Rm(� ) =
nX
i=1

C2
i

2

Z
1

�1

fp(u)z(u)du (20)

where fp(u) is the probability density function of the wheel speed.

The power spectral density is solved by substituting Eq. 20 into Eq. 3.

�m(!) =
nX
i=1

C2
i

2

Z
1

�1

Z
1

�1

fp(u)u
4 cos (2�hi�u) e

�j!�dud� (21)
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Rearranging the order of integration results in an expression that is more easily eval-

uated.

�m(!) =
nX
i=1

C2
i

2

Z
1

�1

fp(u)u
4

Z
1

�1

cos (2�hi�u) e
�j!�d�du (22)

The inner integral of Eq. 22 is merely the Fourier transform of the cosine function,

Ffcos(!o� )g. Substituting for the Fourier transform [5]:

Ffcos(!o� )g = � [�(! � !o) + �(! + !o)] (23)

leads to:

�m(!) =
nX
i=1

�C2
i

2

Z
1

�1

fp(u)u
4 [� (! � 2�hiu) + � (! + 2�hiu)] du (24)

where �(!) designates the Dirac delta function [6].

Using the sifting property of the Dirac delta function, the power spectral density is

expressed in closed form, as a function of the probability density function of the reaction

wheel speed, fp(u).

�m(!) =
nX
i=1

�C2
i !

4

2(2�hi)
5

�
fp

�
!

2�hi

�
+ fp

�
�!

2�hi

��
(25)
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